122 – Introduction to Calculus

- **Course Description from Bulletin:** Basic concepts of calculus of a single variable; limits, continuity, derivatives and integrals. Applications. (3-1-3)
- **Enrollment:** This course does not count for graduation in any engineering, mathematics, natural science or computer science degree program
- **Textbook(s):** Calter & Calter, *Technical Mathematics with Calculus*, 6th ed., Wiley & Sons, 2011.

Other required material: None

Prerequisites: None

Objectives:

- 1. Students will learn to compute the derivative using the limit definition.
- 2. Students will learn to compute derivatives using the basic formulas.
- 3. Students will learn to compute tangent lines to graphs as local linear approximations.
- 4. Students will learn to find extreme points of functions.
- 5. Students will learn the basic algebraic properties of the logarithmic and power functions and their derivatives.
- 6. Students will learn to compute basic antiderivatives.

Final Exam

- 7. Students will learn to use substitution to evaluate definite and indefinite integrals.
- 8. Students will learn to find areas of regions in rectangular and polar coordinates using the definite integral.

Lecture schedule: Three weekly 75 minute sessions, which may vary on a weekly basis between one to two 75 minute lectures and one to two 75 minute workshop sessions.

Course Outline:				Hours
1.	Basic p	Basic properties of linear, quadratic, and piecewise functions		
	includir	ng their compositions, limits an	d graphs	7
2.	Derivatives – limit definition and rules for computation		7	
3.	Basic applications of the derivatives as a rate of change			4
4.	Chain rule and implicit differentiation			7
5.	Graph sketching in Cartesian coordinates; optimization			7
6.	Polar plotting – the slope and inclination of a polar curve			4
7.	Antiderivatives and the definite integral			
8.	Applications of the integral to finding areas and lengths			
	in rectangular and polar coordinates			4
9.	Separable differential equations – application to find the			
	deflection of a uniform beam			2
Assessment:		Homework/Quizzes	10%	
		Worksheets/Projects	25%	
		Tests	40-50%	

20-30%

 Syllabus prepared by: Art Lubin and David Maslanka

 Date: 12/15/05
 Revised: 08/04/08, 12/08/10, 11/01/12, 07/14/15