Math 180 – Fundamentals of Discrete Mathematics

Course Description from Bulletin: Basic counting techniques, discrete probability, graph theory, algorithm complexity, logic and proofs, and other fundamental discrete topics. (3-0-3)

Enrollment: Required for ITM majors. This course does not count toward any mathematics requirements in computer science, engineering, mathematics, or natural science degree programs.

Textbook(s): Discrete Mathematics with Applications, 4th edition, Susanna S. Epp.

Other required material: None

Prerequisites: None

Objectives:

- 1. Students will be able to express mathematics and other concepts in terms of formal logic and vice-versa, and usefully manipulate propositional and predicate logic.
- 2. Students will be able to evaluate and write simple mathematical proofs.
- **3.** Students will compute time complexity of algorithms and understand time complexity from a mathematical viewpoint.
- **4.** Students will know a certain amount about common concepts in discrete mathematics including graph theory, combinatorics, sets, relations, probability, binary arithmetic, recursion, and the pigeonhole principle.

Lecture schedule: 2 75 minute (or 3 50 minute) lectures per week

Course Outline: Hours

1. Fundamental Concepts – sets, Cartesian products, relations and databases, general pigeonhole principle, binary, octal, hexadecimal arithmetic, summation notation, recurrence relations, with applications. If time, one-to-one and onto functions.

9

- 2. Logic and proof expressing real-life concepts and mathematics in logic and vice-versa. Propositions, predicates, quantifiers, implication and equivalence. Basic proof techniques including the contrapositive, counterexamples, contradiction, and when to use each.
- 3. Counting techniques and discrete probability sum and product, permutations and combinations, binomial coefficients, alongside probability and expectation
- 4. Graphs and rooted trees degrees, paths, cycles, connectivity, isomorphism classes, applications
- Algorithm efficiency algorithms (pseudocode), order of a function, big-Oh notation, complexity: worst-case and average-case, applications including recursion, search, and sort.

Total: 39 hrs

Assessment:	Homework	10-30%
	Quizzes	0-20%
	Mid-Term Exams	20-60%
	Project	0-20%
	Final Exam	30-40%

Syllabus prepared by: Michael Pelsmajer, Rob Ellis, and Ben Reiniger

Date: 6/22/2017