MATH 230 – Introduction to Discrete Mathematics

Course Description from Bulletin: Sets, statements and elementary symbolic logic; relations and digraphs; functions and sequences; mathematical induction; basic counting techniques and recurrence. Credit will not be granted for both CS 330 and MATH 230. (3-0-3)

Enrollment: Required for AM majors; MATH 230 or CS 330 is required for CS majors. Elective for other majors.

Textbook(s): Sandy Irani, *Discrete Math*, zyBooks.com. Or, Kenneth H. Rosen, *Discrete Mathematics and Applications* 7th ed, McGraw-Hill (2011), ISBN 0-07-338309-0.

Other required material: None

Prerequisites: None

Objectives:

- 1. Students will express real-life concepts and mathematics using formal logic and vice-versa; they will manipulate using formal methods of propositional and predicate logic; they will know set operation analogues.
- 2. Students will know basic methods of proofs and use certain basic strategies to produce proofs; they will have a notion of mathematics as an evolving subject.
- 3. Students will be comfortable with various forms of induction and recursion.
- 4. Students will understand algorithms and time complexity from a mathematical viewpoint.
- 5. Students will know a certain amount about: functions, number theory, counting, discrete probability, and equivalence relations.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Course Outline: Hours			
1.	Foundations: Expressing real-life concepts and mathematics in terms of formal		
	logic and vice-versa. Manipulate using formal methods of propositional and		
	predicate logic. Also, set operation analogues.	9	
2.	Functions, algorithms, and (mostly worst-case) complexity	7	
3.	Number Theory with applications	4	
4.	Mathematical Reasoning, Induction and Recursion	8	
5.	Counting: Permutations & Combinations, Binomial Coefficients, and the		
	Pigeonhole Principle	6	
6.	Discrete Probability	5	
7.	Relations including Equivalence Relations	3	

Assessment :	Homework and Quizzes	10-30%
	Exams	40-50%
	Final Exam	30-40%

Syllabus prepared by: Michael Pelsmajer and Robert Ellis **Date**: Jan. 17, 2006, updated Nov. 1, 2012, Oct. 5, 2016