MATH 400 – Real Analysis

Course Description from Bulletin: Real numbers, continuous functions; differentiation and Riemann integration. Functions defined by series. (3-0-3)

Enrollment: Required for AM majors

Textbook(s): Gerald Bilodeau, Paul Thie and G.E Keough, *An Introduction to Analysis*, 2nd ed., Jones & Bartlett or Robert G. Bartle and Donald R. Sherbert, *Introduction to Real Analysis*, 3rd ed., Wiley

Other required material: None

Prerequisites: Math 251

Objectives:

- 1. Students will learn to understand basic statements and be able to write basic proofs according to principles of quantificational logic.
- 2. Students will understand thoroughly and precisely the concept of "limit" in its various forms.
- 3. Students will be able to prove using delta and epsilon that a given function is continuous.
- 4. Students will learn to show whether a given series converges or diverges.
- 5. Students will learn to construct examples illustrating properties of sequences and functions.

Lecture schedule: Three 50 minute (or two 75 minute) lectures per week

Cours	e Outline:	Hours
1.	Basic properties of real numbers	5
2.	Limits	8
3.	Sequences	8
4.	Continuous functions	5
5.	Integration	5
6.	Series	6
7.	Sequences and series of functions	5
8.	Introduction to more general space	2

Assessment :	Homework	10-30%
	Quizzes/Tests	20-50%
	Final Exam	30-50%

Syllabus prepared by: Jeffrey Duan and Art Lubin **Date**: 12/15/05, Updated 8/19/07, 03/17/11