MATH 405 – Introduction to Iteration and Chaos

- **Course Description from Bulletin:** Functional iteration and orbits, periodic points and Sharkovsky's cycle theorem, chaos and dynamical systems of dimensions one and two. Julia sets and fractals, physical implications.
- **Enrollment:** Undergraduate and graduate students in mathematics, science, and engineering.

Textbook(s): R.L. Devaney, A First Course in Chaotic Dynamical Systems

Supplements: Notes and recent journal articles

Prerequisites: Math 251,252, and one of the following: Math 332, 333, or consent of the instructor.

Objectives:

- 1. Students will investigate discrete dynamical systems analytically, graphically, and numerically.
- 2. Students will develop and use criteria for classifying fixed and periodic points.
- 3. Students will generate and analyze orbit diagrams of key families of functions.
- 4. Students will understand modern definitions of chaotic (and regular) behavior.
- 5. Students will apply the central ideas to a variety of theoretical and practical questions.

Lecture schedule: 3 50 minute lectures per week

Course Outline:		
1.	Iteration of real functions; discrete dynamical systems	5
2.	Analysis of fixed and periodic points	7
3.	One-parameter families of functions: orbit diagrams of the quadratic	с,
	Tent, and related families, computer explorations.	12
4.	The Li-Yorke and Sharkovsky theorems	4
5.	Chaotic systems: criteria and examples, cantor sets, conjugacy	
	Symbolic dynamics	7
6.	Singer's Theorem and its relatives	2
7.	Newton's (and Halley's) method	4
8.	Additional topics as time permits	4
Assessi	ment: Problem sets 50-70 %	
	Projects 30-50 %	

Syllabus prepared by: Jerry Frank **Date**: March 2, 2006