Math 453 – Combinatorics

Course Description from Bulletin: Permutations and combinatorics; pigeonhole principle; inclusion-exclusion principle; recurrence equations and generating functions; enumeration under group action. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): David R. Mazur, *Combinatorics: A Guided Tour*, MAA (2010). Or, Fred S. Roberts and Barry Tesman, *Applied Combinatorics*, 2nd Edition, Pearson Prentice Hall (2005).

Other required material: None

Prerequisites: MATH 230 Introduction to Discrete Mathematics, or consent of the instructor

Objectives:

- 1. Students will be able to generate conjectures from examples and formulate precise conjectures.
- 2. Students will be able to recognize and write valid proofs. Proof techniques include bijective/combinatorial proofs, induction, and the pigeonhole principle.
- 3. Students will be able to discuss mathematics, including: presenting solutions at the board, generating examples for illustration as appropriate, seeking and finding holes in proposed proofs.
- 4. Students will be familiar with common examples including: subsets of a set, functions, onto functions, one-to-one functions, basic graph substructures, Lattice Paths and Catalan Numbers, the Binomial Theorem and Pascal's Triangle, basic Ramsey Numbers, Fibonacci Numbers, multisets and compositions of integers, derangements, colorings of n-gons up to symmetry.
- 5. Students will be able to count (with proofs) standard and unfamiliar examples using the techniques listed below. Also, be familiar with (proof of) why each technique is valid.
 - a. sum rule, product rule, quotient rule
 - b. distributions from "the 20-fold way" including permutations, combinations, multisets, compositions of integers, Stirling numbers of the second kind, and partitions of integers
 - c. recurrence relations and ordinary generating functions
 - d. Principle of Inclusion-Exclusion
 - e. groups acting on sets ("Burnside's Lemma" and "Polya Enumeration")

Lectures: 3 50 minute classes per week, or 2 75 minute classes per week.

Course Outline:		Hours
1.	Basic Counting Principles and Examples	6-9
2.	Applications of Induction and Recursion in Combinatorics	4-10
3.	Distribution Problems	6-9
4.	Generating Functions	6-9

- 5. The Principle of Inclusion-Exclusion
- 6. Groups Acting on Sets

Problem Solutions	10-40%
Quizzes	0-10%
Midterm Exams	20-50%
Final Exam	30-40%
	Problem Solutions Quizzes Midterm Exams Final Exam

Syllabus prepared by: Michael Pelsmajer and Robert Ellis **Date**: Jan.17, 2006. Updated October 5, 2016.