MATH 454 – Graph Theory and Applications

Course Description from Bulletin: Directed and undirected graphs; paths, cycles, trees, Eulerian cycles, matchings and coverings, connectivity, Menger's Theorem, network flow, coloring, planarity, with applications to the sciences (computer, life, physical, social) and engineering. (3-0-3) (C)

Enrollment: Elective for AM and other majors

Textbook(s): West, *Introduction to Graph Theory*, 2nd ed., Prentice Hall

Other required material:

Prerequisites: (MATH 230 and MATH 251) OR (MATH 230 and MATH 252)

Objectives:

- 1. Students will achieve command of the fundamental definitions and concepts of graph theory.
- 2. Students will understand and apply the core theorems and algorithms, generating examples as needed, and asking the next natural question.
- 3. Students will achieve proficiency in writing proofs, including those using basic graph theory proof techniques such as bijections, minimal counterexamples, and loaded induction.
- 4. Students will work on clearly expressing mathematical arguments, in discussions and in their writing.
- 5. Students will become familiar with the major viewpoints and goals of graph theory: classification, extremality, optimization and sharpness, algorithms, and duality.
- 6. Students will be able to apply their knowledge of graph theory to problems in other areas, possibly demonstrated by a class project.

Lecture schedule: Three 50 minute (or two 75 minute) lectures per week

Course Outline:

- 1. Fundamental concepts of graphs
 - a. Basic definitions of graphs and multigraphs; adjacency matrices, isomorphism, girth, decompositions, independent sets and cliques, graph complements, vertex coloring, chromatic number, important graph like cubes and the Petersen graph
 - b. Paths, cycles, and trails; Eulerian circuits
 - c. Vertex degrees and counting; large bipartite subgraphs, the handshake lemma, Havel-Hakimi Theorem
 - d. Directed graphs: weak connectivity, connectivity, strong components
 - e. Induction and other fundamental proof techniques
- 2. Trees
 - a. Basics: equivalent characterizations of trees, forests
 - b. Spanning trees and 2-switches
 - c. Distance and center

Hours 8

6

	d.	Optimization: Kruskal's The	orem and Dijkstra's Theorem	
3.	Matching and covering			6
	a.	Bipartite matching, vertex co	over, edge cover, independent set,	
		M-alternating path, Hall's T	heorem, König-Egeváry Theorem,	
		Gallai's Theorem		
4.	Connectivity			4
	a.	Vertex cuts, separating sets,	bonds; vertex and edge connectivity,	
		block-cutpoint tree		
	b.	Menger's Theorem: undirect	ed vertex and edge versions	
5.	Network flow			2
	a.	Ford-Fulkerson Labeling alg	orithm, flow integrality,	
		Max-flow/Min-cut Theorem	, proof of Menger's Theorem	
6.	Coloring			6
	a.	Chromatic number: lower bo	ounds from clique number and maxim	um
		independent set, upper bound	ds from greedy coloring (& Welsh-Po	well),
		Szekeres-Wilf, and Brooks'	Theorem. Also k-critical graphs, carte	esian
		product of graphs, and interv	val graphs.	
	b.	k-Chromatic graphs: Myciel	ski's construction, Turán's Theorem	
	c. Edge coloring, line graphs, Vizing's Theorem			
7.	Planarity			5
	a.	a. Embeddings, dual graphs, Euler's formula		
	b. Kuratowski's Theorem			
0	c. Coloring, including the 5-color theorem			
8.	2. Student projects on applications of graph theory			1
Assess	ment:	Homework/Project	10-50%	
		Quizzes/Examss	20-50%	
		Final Exam	30-50%	

Syllabus prepared by: Rob Ellis, Hemanshu Kaul, and Michael Pelsmajer **Date**: 03/02/15 (updated from 03/06/06 and 01/26/12)