MATH 461 – Fourier Series and Boundary-Value Problems

Course Description from Bulletin: Fourier series and integrals. The Laplace, heat, and wave equations: Solution by separation of variables. D'Alembert's solution of the wave equation. Boundary-value problems. (3-0-3)

Enrollment: Required course for AM majors and elective for other majors

Textbook(s): R. Haberman, Elementary Applied Partial Differential Equations, 4th ed., Prentice Hall (2004), ISBN 0-13-065243-1.

Other required material:

Prerequisites: MATH 251, MATH 252

Objectives:

- 1. Students will understand how PDEs (such as the heat and wave equation) model physical phenomena and the basic structure of PDEs and their solutions.
- 2. Students will learn the separation of variable technique for solving linear secondorder PDEs (heat equation, Laplace's equation, wave equation).
- 3. Students will learn the basics of Fourier series.
- 4. Students will learn the basic properties of and how to solve regular Sturm-Liouville eigenvalue problems.
- 5. Students will learn to solve some partial differential equations in more than one space variable.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline: Hours

1. Heat Equation

6

- a. Derivation in 1D
 - b. Different types of boundary conditions
 - c. Derivation in 2D/3D
- 2. Separation of Variables

9

- a. Linearity
- b. Eigenvalues and eigenfunctions
- c. Orthogonality of functions
- d. Separation of variables for heat equation in 1D with various boundary conditions
- e. Separation of variables for Laplace's equation in rectangular and circular domains
- f. Maximum principle for Laplace's equation and well-posedness of Laplace's equation
- 3. Fourier Series

9

- a. Piecewise smooth and periodic functions
- b. Convergence of Fourier series
- c. Fourier sine and cosine series
- d. Term-by-term differentiation and integration of Fourier series
- e. Complex form of Fourier series

4. Vibrating Strings and Membranes 3 a. Derivation of 1D wave equation b. Boundary conditions c. Separation of variables 5. Sturm-Liouville Eigenvalue Problems 12 a. Motivating examples (e.g., heat equation for non-uniform rod) b. Regular Sturm-Liouville problems and their properties (generalized Fourier series, self-adjointness, Green's formula, orthogonality of eigenfunctions, Rayleigh quotient) c. Wave equation for non-uniform strings d. Rayleigh-Ritz principle and approximation properties 6. Partial Differential Equations in Space 3 a. Membranes of arbitrary shape b. Wave equation in arbitrary regions c. Wave equation for circular membranes and Bessel functions

Assessment: Homework 10-30%
Quizzes/Tests 20-50%
Final Exam 30-50%

Syllabus prepared by: Greg Fasshauer and Art Lubin

Date: Dec.9, 2005