Math 477 – Numerical Linear Algebra

Course Description from Bulletin: Fundamentals of matrix theory; least squares problems; computer arithmetic, conditioning and stability; direct and iterative methods for linear systems; eigenvalue problems. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): Lloyd N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM (1997), ISBN 0-89871-361-7.
D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed, Brooks/Cole (2002), ISBN 0-534-38905-8.

Other required material: Matlab

Prerequisites: MATH 350 Introduction to Computational Mathematics or MMAE 350, or consent of the instructor

Objectives:

- 1. Students will learn the basic matrix factorization methods for solving systems of linear equations and linear least squares problems.
- 2. Students will learn basic computer arithmetic and the concepts of conditioning and stability of a numerical method.
- 3. Students will learn the basic numerical methods for computing eigenvalues.
- 4. Students will learn the basic iterative methods for solving systems of linear equations.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:			Hours	
1.	Fundamentals		5	
	a.	Matrix-vector multiplication		
	b.	Orthogonal vectors and matrices		
	с.	Norms		
	d.	Computer arithmetic		
2.	Singu	lar Value Decomposition	3	
3.	QR Fa	actorization and Least Squares	8	
	a.	Projectors		
	b.	QR factorization		
	с.	Gram-Schmidt orthogonalization		
	d.	Householder triangularization		
	e.	Least squares problems		
4.	Conditioning and Stability		5	
	a.	Conditioning and condition numbers		
	b.	Stability		
5.	. Systems of Equations		5	
	a.	Gaussian elimination		

- b. Cholesky factorization
- 6. Eigenvalues
 - a. Overview of eigenvalue algorithms
 - b. Reduction to Hessenberg or tridiagonal form

8

8

- c. Rayleigh quotient, inverse iteration
- d. QR Algorithm without and with shifts
- e. Computing the SVD
- 7. Iterative Methods
 - a. Overview of iterative methods
 - b. Arnoldi iteration
 - c. GMRES
 - d. Conjugate gradients
 - e. Preconditioning

10-30%
s/Project 10-20%
20-50%
30-50%

Syllabus prepared by: Greg Fasshauer and Xiaofan Li **Date**: Nov.6, 2006 (updated Apr. 29, 2015)