MATH 478 – Numerical Methods for Differential Equations

Course Description from Bulletin: Polynomial interpolation; numerical integration; numerical solution of initial value problems for ordinary differential equations by single and multi-step methods, Runge-Kutta, Predictor-Corrector; numerical solution of boundary value problems for ordinary differential equations by shooting methods, finite differences and spectral methods. (3-0-3)

Enrollment: Elective for AM and other majors

Textbook(s): A. Iserles, *A First Course in the Numerical Analysis of Differential Equations*, 2nd Ed., Cambridge University Press (2008), ISBN 0-521-73490-8 (paperback).

D. Kincaid and W. Cheney, *Numerical Analysis: Mathematics of Scientific Computing*, 3rd Ed, Brooks/Cole (2002), ISBN 0-534-38905-8.

Other required material: Matlab

Prerequisites: MATH 350 Introduction to Computational Mathematics or MMAE 350, or consent of the instructor

Objectives:

- 1. Students will learn the basic polynomial interpolation methods and their use with numerical integration methods.
- 2. Students will learn the basic numerical methods for solving initial value problems and their characteristic properties.
- 3. Students will learn the concepts of order, stability, and convergence of a numerical method.
- 4. Students will learn the basic numerical methods for solving boundary value problems and their characteristic properties.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:	Hours
1. Mathematical background	10
a. Lipschitz continuity	
b. Taylor polynomials and polynomials	al interpolation, splines
c. Numerical integration methods	-
d. Richardson Extrapolation	
e. Existence and uniqueness theorem	for initial value problems
2. Nonlinear algebraic systems	3
a. Fixed-point iteration	
b. Newton-Raphson iteration	
3. Single step methods for differential equati	ons 5
a. Derivation of Euler and Taylor me	thods, trapezoidal rule, theta method
b. Order and convergence	, 1
4. Multistep methods for differential equatio	ns 7

	a.	Derivation of Adams methods, gene	eral multistep methods, BDFs	
	b.	Order and convergence		
	c.	Dahlquist equivalence theorem		
5.	Runge	-Kutta methods		3
	a.	Derivation		
	b.	General form		
6.	Stabili	ty and Stiff equations		3
	a.	Linear stability analysis		
	b.	Stiffness		
	c.	A-Stability		
7. Error		control		4
	a.	Adaptive stepsize control		
	b.	Predictor-Corrector methods		
	c.	Embedded Runge-Kutta methods		
8.	Bound	lary value problems		7
	a.	Shooting methods		
	b.	Finite differences		
	c.	FFT and spectral method		
Assess	ment:	Homework	10-30%	
		Computer Programs/Project	10-20%	
		Quizzes/Tests	20-50%	
		Final Exam	30-50%	

Syllabus prepared by: Greg Fasshauer and Xiaofan Li **Date**: Nov. 6, 2006, (last updated Apr.29, 2015)