MATH 488 – Ordinary Differential Equations and Dynamical Systems

Course Description from Bulletin: Boundary-value problems and Sturm-Liouville theory; linear system theory via eigenvalues and eigenvectors; Floquet theory; nonlinear systems: critical points, linearization, stability concepts, index theory, phase portrait analysis, limit cycles, and stable and unstable manifolds; bifurcation; and chaotic dynamics. (3-0-3)

Enrollment: Elective for AM and other majors

Textbook(s): S. Strogatz, *Nonlinear Dynamics and Chaos*, Perseus Publishing

Other required material:

Prerequisites: MATH 251, MATH 252

Objectives:

- 1. Students will learn nonlinear differential equations in the context of mathematical modeling.
- 2. Students will learn basic concepts in nonlinear dynamical systems, i.e., equilibrium solutions, linearization, limit cycles, stability, bifurcation, phase portraits and chaos.
- 3. Students will learn basic techniques and methods for analyzing nonlinear dynamics, i.e., Liapunov stability, index theory, Hopf bifurcation, Poincare-Bendixson theorem, stable/unstable/center manifolds and chaotic behavior.
- 4. Students will learn how to simulate nonlinear dynamics in Matlab.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Cours	se Outline:		Hours
1.	Examples of differential equal equilibrium solutions; existend		16
	boundary value problems; Stu	rm-Liouville theory	
2.	Linearization, linear stability,	asymptotic stability, Poincare stability,	12
	Liapunov stability; Periodic solutions, limit cycles, and Floquet theory;		
	phase portraits		
3.	Bifurcations and invariant manifolds: Saddle node, pitchfork, Hopf,		12
	period-doubling, homoclinic and heteroclinic bifurcations		
4.	Sensitive dependence on initial conditions and chaos		4
5.	Applications to various proble	ems in engineering and science	4
Assess	sment: Homework	10-30%	

Assessment:	Homework	10-30%
	Computer Programs/Project	10-20%
	Quizzes/Tests	20-50%
	Final Exam	30-50%

Syllabus prepared by: Jeffrey Duan and Xiaofan Li

Date: 12/19/05