MATH 489 – Partial Differential Equations

Course Description from Bulletin: First-order equations, characteristics. Classification of second-order equations. Laplace's equation; potential theory. Green's function, maximum principles. The wave equation: characteristics, general solution. The heat equation: use of integral transforms. (3-0-3)

Enrollment: Elective for AM and other majors

Textbook(s): Walter E. Strauss, Partial Differential Equations: An introduction, Wiley

Other required material: None

Prerequisites: MATH 461

Objectives:

- 1. Students will understand basic concepts such as linear operators and linearity, partial differential equation and associated boundary and initial value problems, and well posed problems.
- 2. Students will be able to decide whether a linear equation is of hyperbolic, parabolic or elliptic type.
- 3. Students will understand the concept of maximum principle, existence and uniqueness.
- 4. Students will know the concept of Green's functions and be able to derive them and use them in some simple cases.
- 5. Students will understand the notions of Poisson's equation and the Poisson integral formula.
- 6. Students will understand the three-dimensional wave equation and Huygen's principle.
- 7. Students will be able to handle the notions of orthogonality and eigenfunction expansions and have some acquaintance with Bessel and Legendre functions.
- 8. Students will be able to apply the notions learned here to some physical problems.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:				
1.	First o	4		
	a.	Linear homogenous equations		
	b.	Characteristics		
	с.	Linear non-homogenous equations		
	d.	Well posed problems – boundary and initial value problems		
2.	Second order partial differential equations		4	
	a.	Hyperbolic		
	b.	Parabolic		
	с.	Elliptic		
3.	The wave equation and the diffusion equation		6	
	a.	Characteristics		
	b.	Solution of initial value problems		
	с.	Maximum principles and uniqueness		

4.	Harmo	8			
	a.	Laplace's equation			
	b.	Poisson's equation			
	с.	Maximum principles			
	d.	Poisson's formula for solutions of boundary value problems in disk			
		Green's functions			
	f.	Uniqueness			
5.	Waves	2			
	a.	Characteristic cone			
	b.	Hugyen's Principle			
6.	Gener	8			
	a.	Orthogonality			
	b.	Eigenfunction expansions			
	с.	Bessel functions and Legendre fun	ctions		
		non-linear equations	6		
8.		physical examples	4		
Assessment:		Homework	10-30%		
		Computer Programs/Project	10-20%		
		Quizzes/Tests	20-50%		
		Final Exam	30-50%		

Syllabus prepared by: Xiaofan Li and Jeffrey Duan **Date**: 12/17/05