Math 512 – Partial Differential Equations

Course Description from Bulletin: Basic model equations describing wave propagation, diffusion and potential functions; characteristics, Fourier transform, Green function, and eigenfunction expansions; elementary theory of partial differential equations; Sobolev spaces; linear elliptic equations; energy methods; semigroup methods; applications to partial differential equations from engineering and science. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): R. C. McOwen (2003), Partial Differential Equations, second edition, Prentice Hall. ISBN 0-13-009335-1.
M. Renardy and R. C. Rogers (2004), An Introduction to Partial Differential Equations, second edition. Springer. ISBN 0-387-00444-0.

Other required material:

Prerequisites: MATH 461 or MATH 489 or consent of the instructor

Objectives:

- 1. Students will understand the basic methods for solving the Laplace, heat, and wave equations.
- 2. Students will learn basic theory and modern techniques for understanding solutions of more general partial differential equations.
- 3. Students will improve their problem solving skills in applied analysis of partial differential equations.
- 4. Students will improve their presentation and writing skills.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:		Hours
1.	First order equations	4
	a. Method of characteristics	
	b. Weak solutions	
	c. Conservation laws	
	d. Nonlinear equations	
2.	Wave equation	4
3.	Laplace equation	4
4.	Heat equation	4
5.	Sobolev spaces and imbedding theorems	6
6.	General theory	10
	a. Existence and uniqueness of solutions	
	b. Maximal principles	
	c. Weak solutions and regularity	
	d. Eigenvalues and eigenfunctions of elliptic operators	
7.	Energy methods	5
8.	Semigroup methods	5

Homework	10-30%
Computer Programs/Project	10-20%
Quizzes/Tests	20-50%
Final Exam	30-50%
	Homework Computer Programs/Project Quizzes/Tests Final Exam

Syllabus prepared by: J. Duan **Date**: March 22, 2006