Math 519 – Complex Analysis

Course Description from Bulletin: Analytic functions, contour integration, singularities, series, conformal mapping, analytic continuation, multivalued functions. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): L. Ahlfors, Complex Analysis, McGraw-Hill (1979), ISBN: 00700006571.
J. Conway, Functions of One complex Variable, Springer (1995), ISBN: 0387903283.

Other required material:

Prerequisites:

Objectives:

- 1. Students will learn to use the basic geometry of the complex plane as a tool for solving analytic problems.
- 2. Students will be proficient in representing analytic functions in terms of Taylor and Laurent series.
- 3. Students will be able to identify and classify singularities of analytic functions, including the point at infinity
- 4. Students will be proficient in evaluating contour integrals by the residue theorem and applying this to evaluate real integrals and series
- 5. Students will be able to transform regions using conformal mappings and be able to apply this to solve Laplace equations.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Cours	e Outli	ne:	Hours
1.	Complex Plane		4
	a.	Complex numbers	
	b.	Polar form	
	с.	Basic regions in complex plane	
	d.	Stereographic projection	
2.	Analytic Functions		8
	a.	Cauchy-Riemann equations	
	b.	Harmonic functions	
	с.	Elementary functions	
	d.	Analytic functions as mappings	
3.	Integr	ation	10
	a.	Riemann-Stieltjes integrals	
	b.	Contour integrals	
	с.	Cauchy's Theorem and consequences	
4.	Taylo	r and Laurent Series	8
	a.	Singularities	
	b.	Analytic continuation	
	с.	Residue theorem and applications	

- 5. Conformal Mapping
 - a. Analytic functions
 - b. Mobius transformations
 - c. Schwarz-Christoffel transformations
 - d. Applications
- 6. Choice of Optional Topics
 - a. e.g. Laplace transforms, infinite products, gamma functions, Mittag-Leffler Theorem,

Assessment:	Homework	20-40%
	Quizzes/Tests	20-50%
	Final Exam	30-50%

Syllabus prepared by: Art Lubin and Xiaofan Li **Date**: June 5, 2006

4