MATH 540 – Probability

Course Description from Bulletin: Random events and variables, probability distributions, sequences of random variables and limit theorems. (3-0-3)

Enrollment: Graduate elective

 Textbook(s): <u>Required texts</u>: 1. Jean Jacod and Philip Protter, *Probability Essentials*, Springer (2004)
2. Marek Capinski and Tomasz Zastawniak, *Probability Through Problems*, Springer (2003)
<u>Complementary text</u>: Marek Capinski and Ekkehard Kopp , Measure, Integral and Probability, 2nd edition, Springer (2004)

Prerequisites: MATH 400, MATH 475 or consent of an instructor

Objectives:

- 1. Students will understand the axioms of probability.
- 2. Students will understand the construction of probability measure on Rⁿ.
- 3. Students will understand the concept of conditional proability and conditional expectation.
- 4. Students will understand the concept and applications of characteristic functions.
- 5. Students will understand the concept and use of multivariate Gaussian distributions.
- 6. Students will understand some basic asymptotic results in probability.
- 7. Students will understand the Radon-Nikodym theorem and its use in probability.

Lecture schedule: two 75 minute lectures

Course Outline:		
1.	Introduction: State space, events, probability, random variab	ole 3
2.	Axioms of probability, and probability on finite and counta	ble spaces 4.5
3.	Construction of a probability measure	6
4.	Finite dimensional random variables	6
5.	Conditional probability, Independence	6
6.	Characteristic function	6
7.	Gaussian random variables	1.5
8.	Asymptotics	4.5
9.	Conditional expectation and martingales	4.5
10.	. The Radon-Nikodym theorem	3
Δςςρςς	sment: Homework 0-10%	

Assessment:	Homework	0-10%
	Quizzes/Tests	45-50%
	Graduate Project	0-10%
	Final Exam	45-50%

Syllabus prepared by: Tom Bielecki and Andre Adler **Date**: 06/10/06