Math 556 – Metric Spaces

Course Description from Bulletin: Point-set theory, compactness, completeness, connectedness, total boundedness, density, category, uniform continuity and convergence, Stone-Weierstrass theorem, fixed-point theorems. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): *Metric Spaces*, course notes authored by P. C. Deliyannis, and additional handouts

Other required material:

Prerequisites: MATH 400

Objectives:

- 1. Students will master basic metric concepts, including convergence, completeness, compactness, separability, and category.
- 2. Students will apply these concepts to key classes of spaces, including R^n , l_p and L_p .
- 3. Students will learn to analyze mappings between spaces.
- 4. Students will study the proofs of important theorems including the Stone-Weierstrass, Peano, and Banach fixed-point theorems and will learn to apply these results.
- 5. Students will learn to use metric space methods to solve problems in science and engineering.
- 6. Students will attain background for advanced courses in real analysis, functional analysis, and topology.

Lecture schedule: 3 50-minute (or 2 75-minute) lectures per week

Course Outline:		Hours
1.	Metrics: basics, comparisons, classes of examples	6
2.	Convergence, closure, completeness; Stone-Weierstrass theorem	8
3.	Compactness, separability, boundedness; Peano's theorem	8
4.	Open coverings, category	5
5.	Completions; L _p spaces	4
6.	Mappings: continuity, uniform continuity, equicontinuity	6
7.	Product spaces	2
8.	Fixed-point theorems and applications	6

Assessment:	Problem sets	40-80%
	Projects and presentations	20-40%
	Exams	0-50%

Syllabus prepared by: Jerry Frank **Date**: July, 2006