Math 577 – Computational Mathematics I

Course Description from Bulletin: Fundamentals of matrix theory; least squares problems; computer arithmetic, conditioning and stability; direct and iterative methods for linear systems; and eigenvalue problems. Credit may not be granted for both MATH 577 and MATH 477. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): Lloyd N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM (1997), ISBN 0-89871-361-7.
D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed, Brooks/Cole (2002), ISBN 0-534-38905-8.

Other required material: Matlab

Prerequisites: An undergraduate numerical course such as MATH 350, or consent of the instructor

Objectives:

- 1. Students will understand the basic matrix factorization methods for solving systems of linear equations and linear least squares problems and their derivations.
- 2. Students will understand basic computer arithmetic and the concepts of conditioning and stability of a numerical method.
- 3. Students will understand the basic numerical methods for computing eigenvalues and their derivation.
- 4. Students will understand the basic iterative methods for solving systems of linear equations and their derivation.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).
- 6. Students will improve their problem solving skills in computational mathematics.
- 7. Students will improve their presentation and writing skills.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:	Hours
1. Fundamentals	5
a. Matrix-vector multiplication	
b. Orthogonal vectors and matrices	
c. Norms	
d. Computer arithmetic	
2. Singular Value Decomposition	3
3. QR Factorization and Least Squares	8
a. Projectors	
b. QR factorization	
c. Gram-Schmidt orthogonalization	

d. Householder triangularization

e.	Least squares problems		
4. Conditi	oning and Stability		5
a.	Conditioning and condition numbers	8	
b.	Stability		
5. System	s of Equations		5
a.	Gaussian elimination		
b.	Cholesky factorization		
6. Eigenv	alues		8
a.	Overview of eigenvalue algorithms		
b.	Reduction to Hessenberg or tridiagon	nal form	
с.	Rayleigh quotient, inverse iteration		
d.	QR Algorithm without and with shif	ts	
e.	Computing the SVD		
7. Iterativ	e Methods		8
a.	Overview of iterative methods		
b.	Arnoldi iteration		
с.	GMRES		
d.	Conjugate gradients		
e.	Preconditioning		
Assessment:	Homework	10-30%	
	Computer Programs/Project	10-20%	
	Quizzes/Tests	20-50%	
	Final Exam	30-50%	

Syllabus prepared by: Greg Fasshauer and Xiaofan Li **Date**: Oct.19, 2005, updated Jan.24, 2008