Math 581 – Finite Elements

Course Description from Bulletin: Various elements, error estimates, methods for solving systems of linear equations including multigrid, discontinuous Galerkin methods. Applications. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s):

- **1.** Claes Johnson, *Numerical Solution of Partial Differential Equations by the Finite Element Method*, Dover (2009), ISBN 048646900X, 978-0486469003.
- **2.** C. Shu, *Discontinuous Galerkin Methods: General Approach and Stability*, Lecture Notes

Other required material: Matlab

Prerequisites: Undergraduate courses in numerical methods (such as Math 350) and in partial differential equations (such as Math 489), or consent of the instructor.

Objectives:

- 1. Students will understand how to discretize elliptic PDEs with the finite element method (FEM).
- 2. Students will understand the concepts of finite element spaces and error estimates.
- 3. Students will understand the basics of the multigrid method.
- 4. Students will understand the basics of the DG method.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).
- 6. Students will improve their problem solving skills in computational mathematics.
- 7. Students will improve their presentation and writing skills.

Lecture schedule: 2 75-minute lectures per week

Course Outline: Lectures

- 1. Introduction to FEM for elliptic problems
 - a. Variational formulation of a 1D model
 - b. FEM for the model problem with piecewise linear functions
 - c. An error estimate for the model problem
 - d. FEM for the Poisson equation
 - e. Some math concepts: Hilbert Spaces
 - f. Geometric interpretation of FEM
 - g. Natural and essential boundary conditions
 - h. Remarks on FEM software
- 2. Discretization and approximation theory for FEM
 - a. Regularity requirement
 - b. Some examples of finite elements
 - c. Interpolation with piecewise polynomials in 2D
 - d. Discretization and error estimates for FEM for elliptic problems

5

	e.	Adaptive methods		
3. So:	Some Applications in elliptic problems			2
	a.	. The elasticity problem		
	b.	Stokes' problem		
4. Me	etho	ods for solving systems of linear equations		8
	a.	. Direct methods		
	b.	Iterative methods: overview		
	c.	Conjugate gradient method		
	d.	Preconditioning		
	e.	Multigrid methods		
5. Discontinuous Galerkin (DG) methods				9
	a.	Time discretization		
b.		DG method for conservation laws (hyperbolic equations)		
	c.	DG method for convection-diffusion equations		
d		DG method for PDEs with higher-order derivatives		
Assessment:		Homework	20-40%	
		Computer Programs/Project	20-40%	
		Quizzes/Tests	10-40%	
		Final Exam	20-40%	

Syllabus prepared by: Xiaofan Li and Shuwang Li **Date**: Nov. 15, 2011