Math 515 – Ordinary Differential Equations and Dynamical Systems

Course Description from Bulletin: Basic theory of systems of ordinary differential equations; equilibrium solutions, linearization and stability; phase portraits analysis; stable unstable and center manifolds; periodic orbits, homoclinic and heteroclinic orbits; bifurcations and chaos; nonautonomous dynamics; and numerical simulation of nonlinear dynamics. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): L. Perko (2001), Differential Equations and Dynamical Systems, Third edition, Springer. ISBN 0-387-95116-4.

S. Wiggins (1996), Introduction to Applied Nonlinear Dynamical Systems and Chaos, second edition. Springer. ISBN 0-3540970037.

Other required material: Matlab

Prerequisites: MATH 252 or consent of the instructor

Quizzes/Tests

Objectives:

- 1. Students will learn basic methods for understanding solutions of systems of ordinary differential equations.
- 2. Students will learn modern dynamical systems techniques for understanding evolution of systems of ordinary differential equations.
- 3. Students will improve their problem solving skills in nonlinear dynamical systems.
- 4. Students will improve their presentation and writing skills.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:				Hours
1.	Basic theory of systems of ordinary differential equations		4	
	a.	Existence and uniqueness		
	b. Dependence on initial conditions			
	c.	Solution techniques		
	d.	Flow property		
	e.	Equilibrium solutions and lineariza	ntion	
2. Linea		r systems		4
3.	. Hartman-Grobman theorem			4
4.	Stability			4
5.	Poincare-Bendixson theory			6
6.	6. Invariant manifold theory			8
7.	. Bifurcation			5
8.	Strange attractors and chaos			5
9.	9. Nonautonomous dynamics			
Assessment:		Homework	10-30%	
		Computer Programs/Project	10-20%	

20-50%

Final Exam 30-50%

Syllabus prepared by: J. Duan **Date**: March 22, 2006