MATH 252 – Introduction to Differential Equations

Course Description from Bulletin: Linear differential equations of order one. Linear differential equations of higher order. Series solutions of linear DE. Laplace transforms and their use in solving linear DE. Introduction to matrices. Systems of linear differential equations.(4-0-4)

Enrollment: Required for AM majors and some engineering majors

Textbook(s): Zill, A First Course in Differential Equations with Modeling Applications, 11th ed., Brooks/Cole

Other required material: None

Prerequisites: Math 152

Objectives:

- 1. Students will be able to classify and solve first-order DEs and IVPs of various types: especially separable, exact, linear, and others reducible to them.
- 2. Students will be able to solver higher-order linear DEs and IVPs having constant coefficients via the method of undetermined coefficients and variation of parameter.
- 3. Students will be able to obtain power series solutions (about regular points) of second-order linear DEs having variable coefficients.
- 4. Students will be able to manipulate Laplace transforms and to solve linear IVPs using them.
- 5. Students will be able to solve systems of first-order linear DEs.
- 6. Students will be able to solve a variety of physical problems modeled by firstorder and linear second-order IVPs.

Lecture schedule: Three 75 minute lectures per week

Course Outline:				
1.	Review of methods for first-order DEs			
2.	Linear Equation of Higher Order	12		
	a. Initial-value and boundary-value problems			
	b. Linear dependence and linear independence			
	c. Solutions of linear equations			
	d. Homogeneous linear equations with constant coefficients			
	e. Undetermined coefficients			
	f. Variation of parameters			
3.	Application	4		
	a. Free undamped motion			
	b. Free damped motion			
	c. Driven motion			
	d. Power series solutions, solutions about ordinary points			
4.	Laplace Transforms	13		
	a. Laplace transform and inverse transform			
	b. Translations theorems and derivatives of a transform			

	с.	Transforms of derivativ	ves, integrals and periodic functions	
	d.	Applications		
	e.	Systems of linear equat	tions	
5.	Introd	uction to Matrices		10
	a.	Basic definitions and the	neory	
	b.	Gaussian elimination		
	с.	Eigenvalues		
6.	System	ns of Linear First-Order	Differential Equations	12
	a.	Preliminary theory		
	b.	Homogeneous linear sy	vstems	
	с.	Distinct real eigenvalue	es, repeated eigenvalues, complex eigenvalue	es
	d.	Variation of parameters	S	
ssess	ment:	Homework	10-25%	

Assessment:	Homework	10-25%
	Quizzes/Tests	40-50%
	Common Final Exam	35%

Syllabus prepared by: Andre Adler and Warren Edelstein **Date**: 12/15/05, updated July 2024