Ground states and dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations
Description
In this talk, I begin with a brief derivation of the nonlinear Schrodinger/Gross-Pitaevskii equations (NLSE/GPE) from Bose-Einstein condensates (BEC) and/or nonlinear optics. Then I will present some mathematical results on the existence and uniqueness as well as non-existence of the ground states of NLSE/GPE under different external potentials and parameter regimes. Dynamical properties of NLSE/GPE are then discussed, which include conservation laws, soliton solutions, well-posedness and/or finite time blowup. Efficient and accurate numerical methods will be presented for computing numerically the ground states and dynamics. Extension to NLSE/GPE with an angular momentum rotation term and/or non-local dipole-dipole interaction will be presented. Finally, applications to collapse and explosion of BEC, quantum transport and quantized vortex interaction will be investigated.
Event Topic
Stochastic & Multiscale Modeling and Computation